Improving Language Models with Common-Sense Knowledge for Reasoning

(Bill) Yuchen Lin

Advisor: Prof. Xiang Ren

Department of Computer Science University of Southern California 2021 March

Super-Human Performance in AI?

2018 Common Sense?

Alibaba and Microsoft AI beat human e ^{ac} ac scores on Stanford reading test h ⁵^{Co} Neural networks edged past human scores on the measure of machine reading. Βι By Rob LeFebvre, @roblef 10 937 01.15.18 in Personal Computing f Comments Shares #BCTECHSur 202x? IN STYLE human-level performance on reading comprehension on SQuAD (Stanford QA dataset) super-human performance on speech recognition 2017 Google neural machine translation 2016 super-human performance on image captioning 2015 super-human performance on object recognition Timeline credits: ACL2020 Tutorial on Commonsense

Teach Machines to Think with Commonsense Knowledge

- a) The common knowledge that are shared among most people in the world.
- b) The reasoning ability to make decisions in everyday situations.

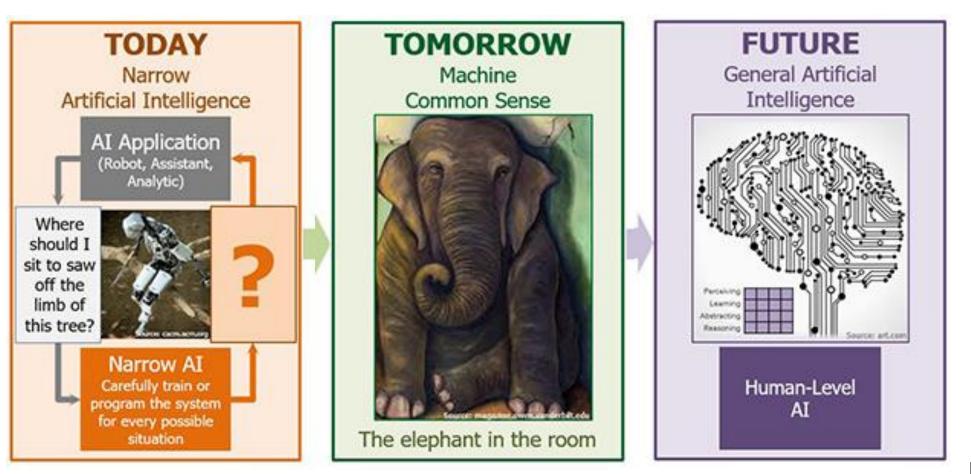
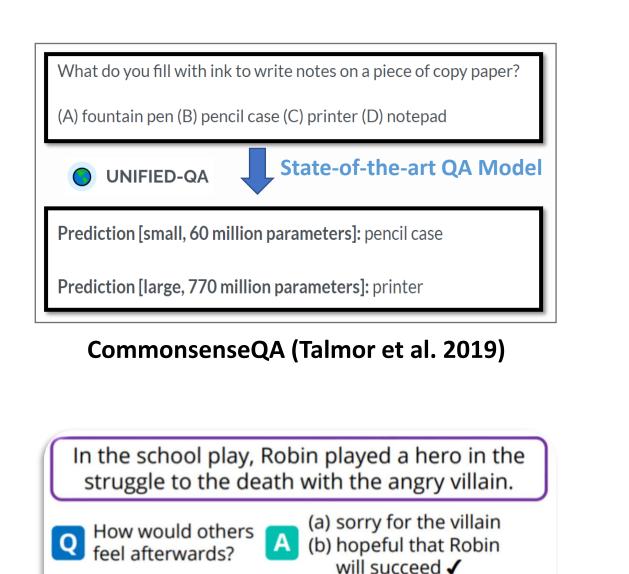


Image Source: DARPA News



COPA SociallQa Physical General PIQA CommonsenseQA WinoGrande Temporal **Common-Sense MC-TACO Benchmarks Multiple-Choice** ... **Question Answering**

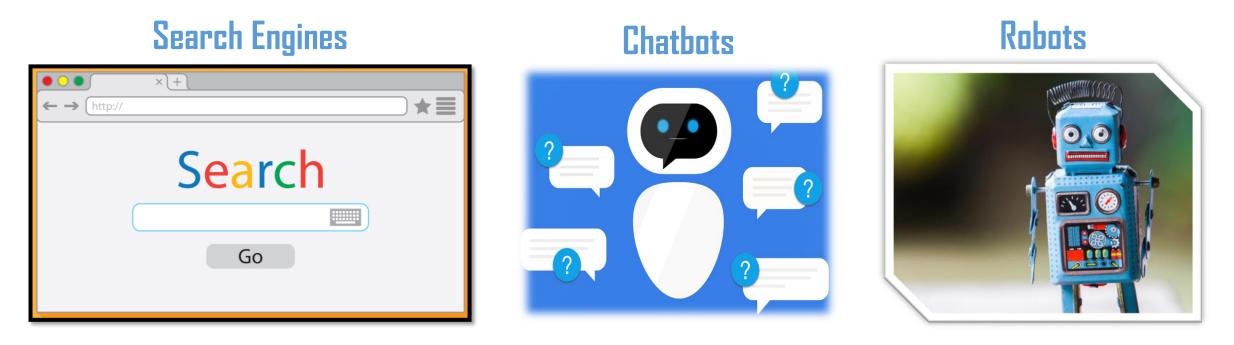
Social

Social IQA (Sap et al. 2019)

(c) like Robin should lose

Causal

Are multiple-choice QA useful in realistic applications?



Common Sense as a Service for practical AI applications.

Real users usually do **NOT** have any *answer candidates* when querying commonsense knowledge.

Our Proposal: Open-Ended Commonsense Reasoning

Q: What can help alleviate global warming?

Open-Ended CSR Input: a question only

A large text corpus of commonsense **facts**

Carbon dioxide is the major greenhouse gas contributing to <u>global warming</u>.

<u>Trees</u> remove *carbon dioxide* from the atmosphere through photosynthesis .

renewable energy, *tree*, solar battery, ...

 $\int a$

Output: a ranked list of concepts as answers.

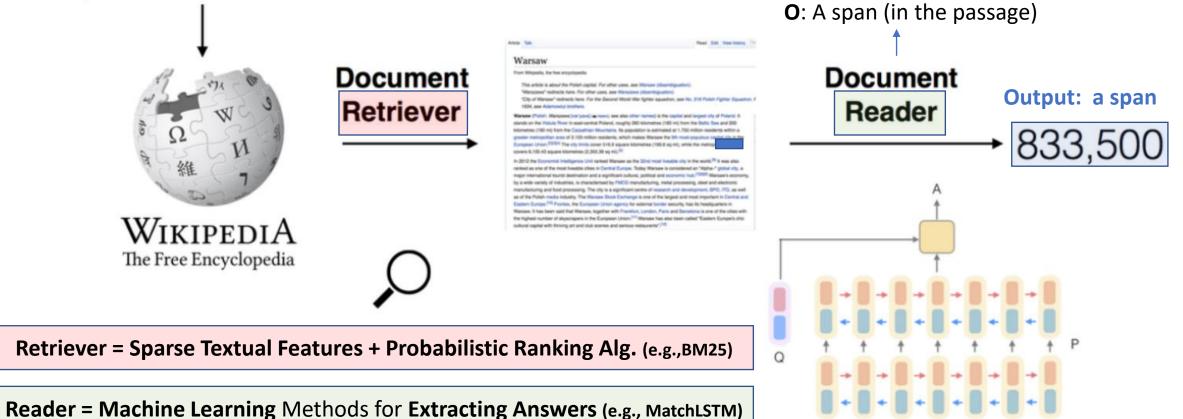
Multiple-Choice/Closed CSR Input: a question + a few choices A) air conditioner B) fossil fuel C) renewable energy D) carbon dioxide

Can machines learn to **reason** for such **commonsense** questions?

Prior Works (1): DrQA --- Retriever + Reader (2017)

Input: a question w/o any candidate choices.

Q: How many of Warsaw's inhabitants spoke Polish in 1933?



I: Question + Passage

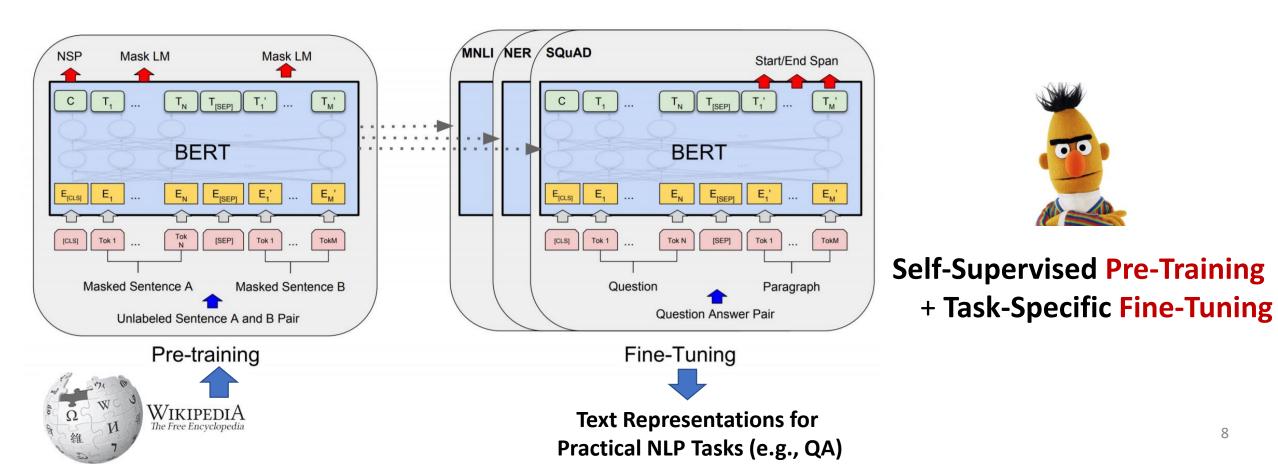
Chen et al., 2017. Reading Wikipedia to Answer Open-domain Questions

BERT --- A neural language model. (2018)

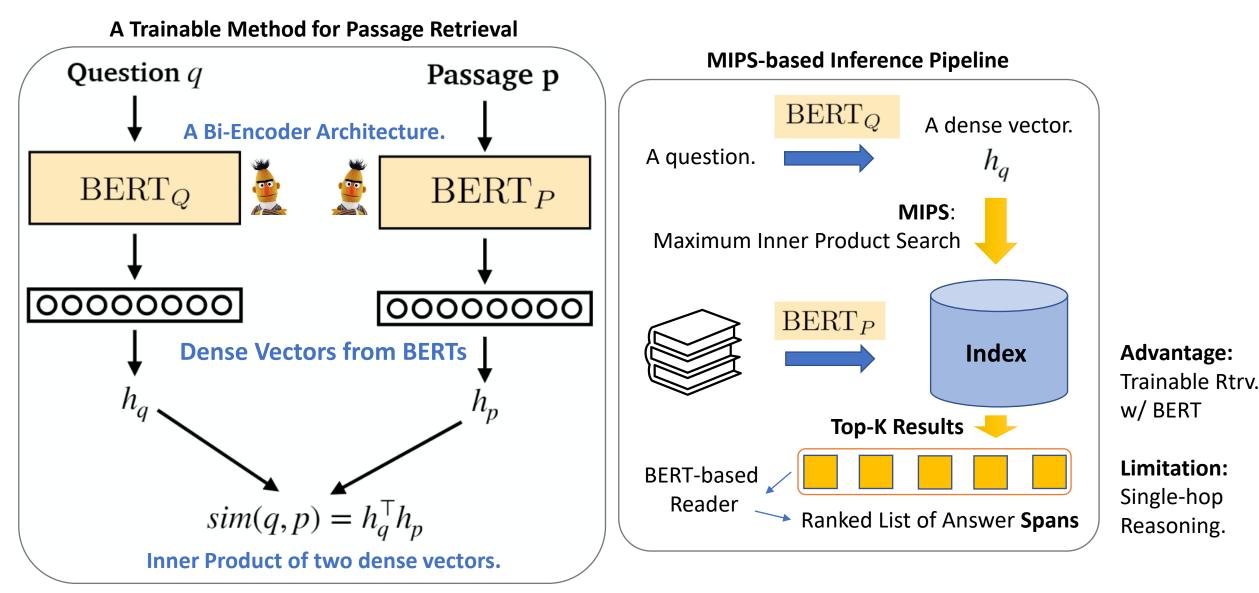
Masked Language Modeling:

Learn a neural model to fill in the blanks --- masked words in a sentence.

0 9



Prior Works (2): DPR --- Dense Passage Retriever (2020)



Karpukhin et al., 2020. Dense Passage Retrieval for Open-Domain Question Answering

Prior Works (3): DrKIT --- Differentiable Multi-Hop Reasoning (2020)



Dhingra et al. 2020. Differentiable Reasoning over a Virtual Knowledge Base

Why is OpenCSR challenging?1) Latent Multi-Hop Structures (vs. factoid questions).

Who voices the dog in the TV show Family Guy ?

A multi-hop, factoid question from HotpotQA.

What can help alleviate global warming?

```
q₁ = the dog in the TV show Family Guy
q₂ = who voices [q₁. answer]
Clear, explicit hints for querying
evident relations between named entities.
q₁ = what contributes to global warming
q₂ = what removes [q₁. answer]
```

Latent, implicit hints for querying complex relations between concepts.

2) Very Large Search Space (vs. multiple-choice setting).
3) Much Dense Entity Links (vs. Wikipedia entities).

Formulating the task of OpenCSR

a corpus of common-sense facts, e.g., GenericsKB. \mathcal{F}

 $f_i \in \mathcal{F}$ A fact is a sentence of generic

 $c_i \in \mathcal{V}$

global warming commonsense knowledge carbon dioxide A knowledge corpus atmosphere as a hypergraph. greenhouse gas water oxygen A concept is a noun or noun f_3 = the <u>atmosphere</u> contains <u>oxygen</u>, chunk that are mentioned in ${\cal F}$ carbon dioxide, and water. A weighted set of facts \rightarrow A sparse vector. $|\mathcal{F}| \times d$ $|\mathcal{F}| imes |\mathcal{F}|$ $|\mathcal{V}| imes |\mathcal{F}|$ Dense Matrix Sparse Matrix Sparse Matrix $|\mathcal{F}|$ of **Concept-to-Fact** Links of Fact-to-Fact Links of Fact Embeddings

photosynthesis

tree

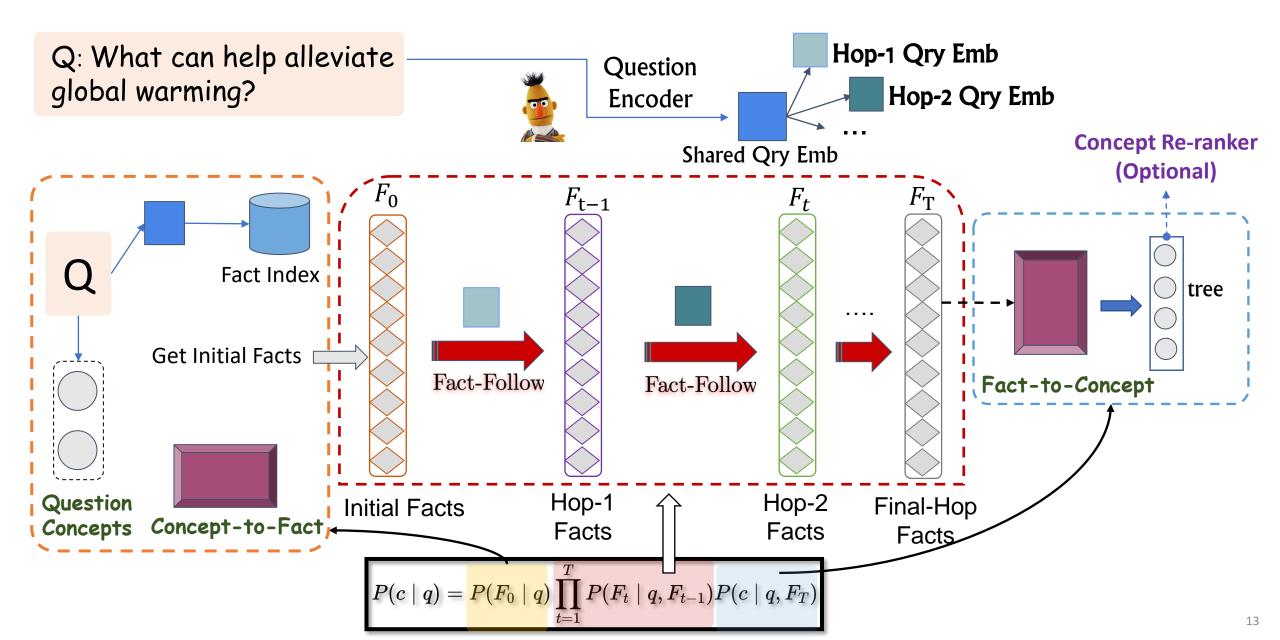
 $f_2 =$ <u>trees</u> remove <u>carbon dioxide</u> from

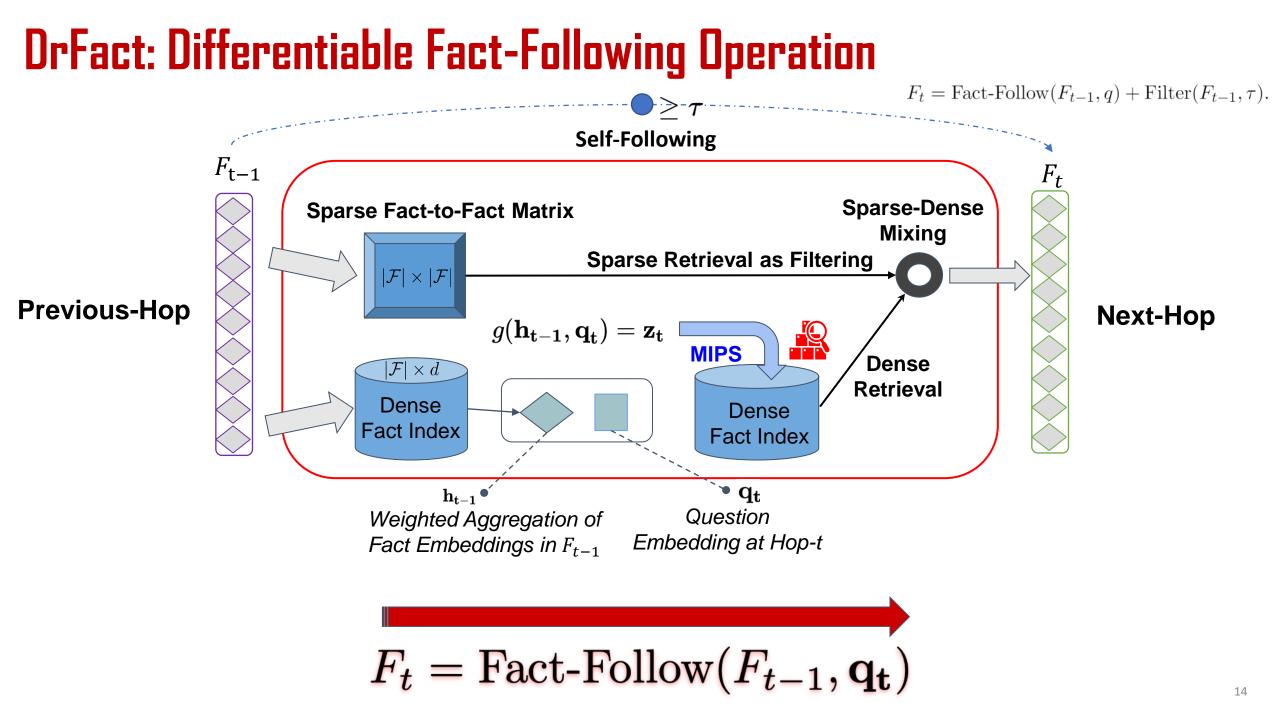
the atmosphere through photosynthesis .

 $f_1 = carbon dioxide$ is the major greenhouse gas

contributing to global warming.

Overall Workflow of DrFact





Methods	BM25 (off-the-shelf)	DPR (EMNLP 2020)	DrKIT (ICLR 2020)	DrFact (NAACL 2021)
Knowledge Structure	A set of documents	A set of documents	Mention-Entity Bipartite Graph	Concept-Fact Hypergraph
Multi-hop Reasoning Formulation	N/A	N/A	Entity-Following	Fact-Following
Index for Dense Retrieval	N/A	Dense Fact Embeddings	Dense Mention Embedding	Dense Fact Embeddings
Sparse Retrieval Method	TF-IDF based Index+ BM25 Ranking Func.	N/A	Entity Cooccurrence	Fact-to-Fact Matrix
Multi-Hop Questions	N/A	N/A	Aggregating Multiple Models	A single model w/ Self-Following
Intermediate Supervision	N/A	N/A	N/A	Distant Supervision

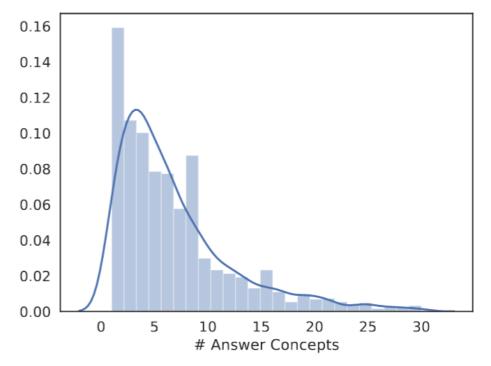
Inference Efficiency:

Methods	Major Computations	Speed (sec/q)	-
BM25	Sparse Retrieval	0.14	-
DPR	BERT-base + MIPS	0.08	
DrKIT	BERT-base + $T^*(MIPS + sp_{e2m})$	0.47	← T=3
DrFact	$BERT\text{-}base + T^*(MIPS\text{+}\operatorname{sp}_{f2f})$	0.23	K=300
X+ MCQA	X + K * BERT-Large	+ 14.12	K=300

Evaluation Setup

OpenCSR Dataset

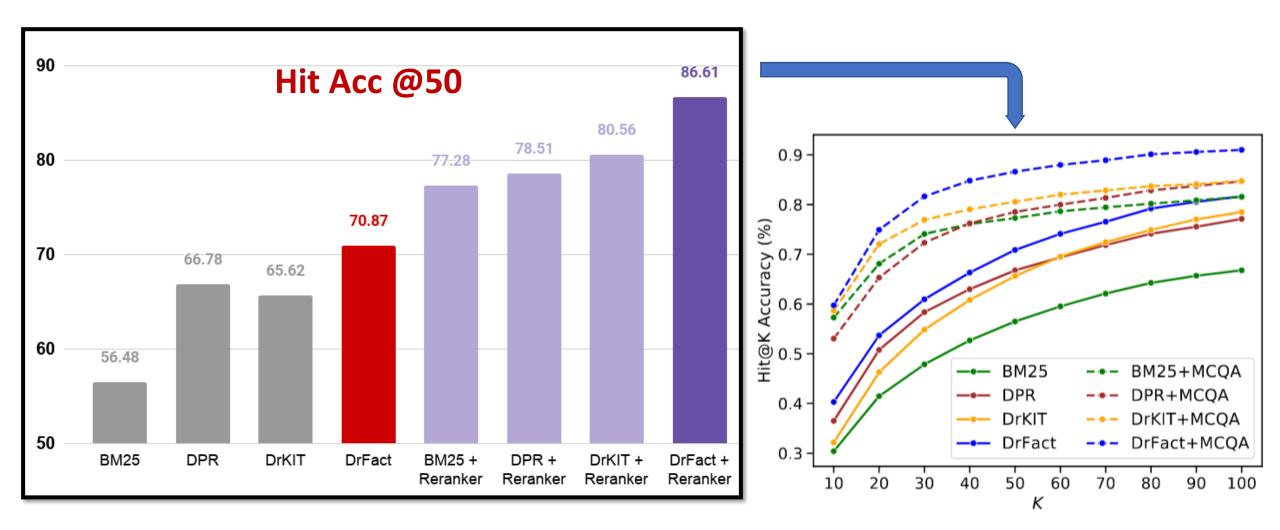
- Reformatted 3 Multiple-Choice QA Datasets (ARC, OBQA)
- + Human-Annotated Answers (7 answer concepts per question on average)



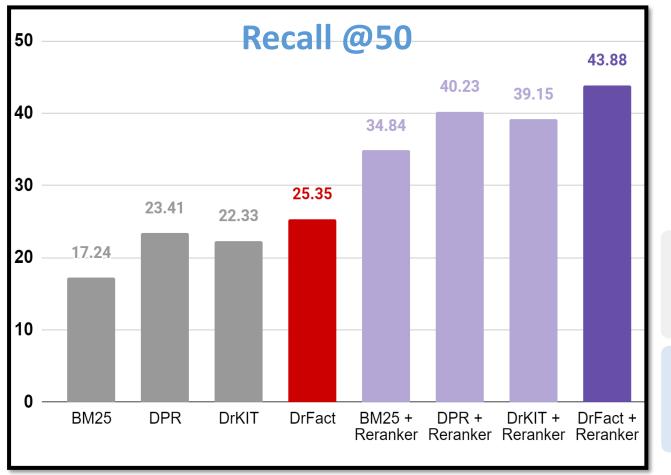
Metrics for evaluation

- Hit Acc @ K <-- In the top K retrieved facts, there is at least one fact containing a correct answer (1 or 0).
- Ret Acc @ K <-- In the top K retrieved facts, the percentage of the covered answer concepts (over all the answer concepts).
- Both are reported as an **average** over all examples in the **test set**.

Main Experimental Results



Experimental Results



DPR vs DrFact: Faithfulness and Interpretability

Q: "What will separate iron filings from sand? "

f1= angle <u>irons</u> reinforce the thinnest section of the ring ."
f2= sieves are used for <u>separating</u> fossils from <u>sand</u>..."
f3= stainless steel has a rough surface just after <u>filing</u> ." **DPR**

<u>iron filings</u> show the magnetic fields . (in F0) **DrFact** magnets produce a magnetic field with a north ... (in F1) magnets attract magnetic metals through magnetism (in F2)

Findings and Take-Home Messages

• OpenCSR is a novel setting to study CSR

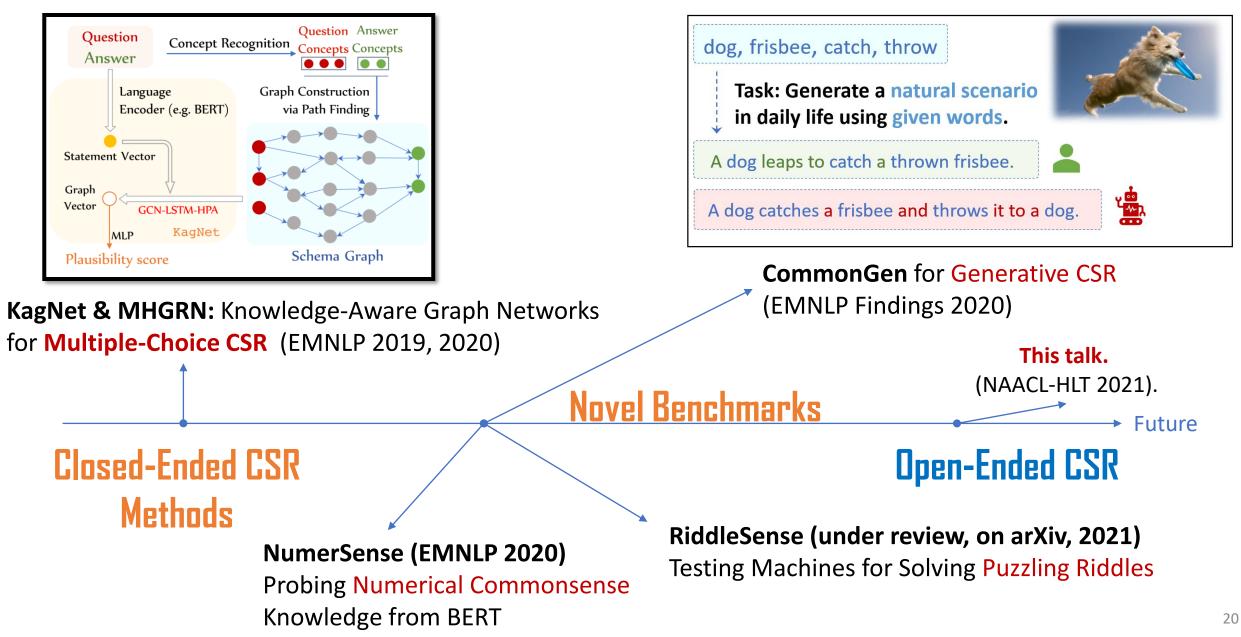
 \odot more realistic and challenging .

o new data annotation for evaluation.

• DrFact is an effective and efficient method for OpenCSR.

o differentiable Fact-Follow operation for end-to-end learning.
o state-of-the-art performance comparing to strong baselines.
o improve the explanations for multi-hop questions.

My PhD Progress on Common Sense Reasoning



Future Directions

- Common-Sense Reasoning Beyond English
 - Common sense knowledge as the bridge for breaking language barriers.
- Embodied Intelligence w/ Common Sense
 - Learning to make sequential actions in interactive physical environment.

Open-Source Toolkit for Common Sense Reasoning

• Connecting commonsense research with realistic application scenarios.